LINEAR EQUATIONS AND FUNCTIONS

Algebra 2

Algebra II 2

- This Slideshow was developed to accompany the textbook
 - □ Larson Algebra 2
 - By Larson, R., Boswell, L., Kanold, T. D., & Stiff, L.
 - □ 2011 Holt McDougal
- Some examples and diagrams are taken from the textbook.

Slides created by Richard Wright, Andrews Academy rwright@andrews.edu

- □ Relation is mapping (pairing) of input values to output values
 - Input \rightarrow Domain \rightarrow often x
 - □ Output \rightarrow Range \rightarrow often y

(-4, 3)

(-2, 1)

(0, 3)

(1, -2)

(-2, 4)

X	V
-4	3
-2	1
0	3
1	-2
-2	-4

Ask domain and range questions for the relations

- Function
 - Relation where each input has exactly one output
 - Same *x* does not go to more than one *y*
- Tell whether the relation is a function.

x	-2	-1	0	1	3
y	-4	-4	-4	-4	-4

Yes, each x goes to only one y

- Vertical line test
 - The relation is a <u>function</u> if no vertical line touches the graph at more than one point

First is a function Second is <u>NOT</u> a function

- Equation in two variables
 - □ Input \rightarrow usually $x \rightarrow$ independent variable
 - □ Output \rightarrow usually $y \rightarrow$ dependent variable
 - Solution \rightarrow ordered pair (x, y) that gives a true statement
- To graph
 - Make a table of values by choosing *x* and calculating *y*
 - Plot enough points to see the pattern
 - Connect the points with a line or curve

Make sure the graph actually goes through the points it should go through

□ Graph the equation y = 3x - 2

<u>x</u>	<u>v</u>
-3	-11
-2	-8
-1	-5
0	-2
1	1
2	4
3	7

<u>x</u>	l y
-3	-11
-2	-8
-1	-5
0	-2
1	1
2	4
3	7

- Linear function
 - □ Can be written in form y = mx + b
 - Graphs a line
 - y = 2x 3
- Functional notation
 - \square Replace the *y* with f(x)
 - Name
 - Variable value

Point out that functions can be named more than just f

- \Box Tell whether the function is linear. Then evaluate the function when x = -2.
 - $f(x) = x 1 x^3$
 - **Not** Linear (has an exponent on x);
 - $f(-2) = (-2) 1 (-2)^3 = 5$
 - g(x) = -4 2x
 - **Linear**;
 - f(-2) = -4 2(-2) = 0

Not Linear (has an exponent on x);

$$f(-2) = (-2) - 1 - (-2)^3 = 5$$

Linear;

$$f(-2) = -4 - 2(-2) = 0$$

Homework Quiz 2.1 Homework Quiz

Slope is the rate of change

- Positive Slope
 - Rises
- Zero Slope
 - Horizontal
- Negative Slope
 - Falls
- No Slope (Undefined)
 - Vertical

No

There's **No Slope** to stand on.

- □ Find the slope of the line passing through the given points. Classify as *rises, falls, horizontal,* or *vertical*.
 - **(**0, 3), (4, 8)

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{8 - 3}{4 - 0} = \frac{5}{4}$$
; rises

 \Box (7, 3), (-1, 7)

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{7 - 3}{-1 - 7} = \frac{4}{-8} = -\frac{1}{2}$$
; falls

- **(7, 1), (7, -1)**
 - $m = \frac{y_2 y_1}{x_2 x_1} = \frac{-1 1}{7 7} = -\frac{2}{0} =$ undefined; vertical

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{8 - 3}{4 - 0} = \frac{5}{4}$$
; rises

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{7 - 3}{-1 - 7} = \frac{4}{-8} = -\frac{1}{2}$$
; falls

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-1 - 1}{7 - 7} = -\frac{2}{0}$$
 = undefined; vertical

- Parallel Lines
 - In the same plane and do not intersect
 - Go the same direction
 - Slopes are the same

- Intersect to form a right angle
- Slopes are negative reciprocals
- OR Product of slopes is -1

$$\frac{2}{3}$$
 and $-\frac{3}{2}$

- Tell whether the lines are parallel, perpendicular, or neither.
 - Line 1: through (-2, 8) and (2, -4)
 - □ Line 2: through (-5, 1) and (-2, 2)

■ Line 1:
$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-4 - 8}{2 - (-2)} = -\frac{12}{4} = -3$$
■ Line 2: $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - 1}{-2 - (-5)} = \frac{1}{3}$

Perpendicular

Line 1:
$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-4 - 8}{2 - (-2)} = -\frac{12}{4} = -3$$

Line 2: $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - 1}{-2 - (-5)} = \frac{1}{3}$
Perpendicular

- Tell whether the lines are parallel, perpendicular, or neither.
 - □ Line 1: through (-4, -2) and (1, 7)
 - Line 2: through (-1, -4) and (3, 5)

■ Line 1:
$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{7 - (-2)}{1 - (-4)} = \frac{9}{5}$$

- Line 1: $m = \frac{y_2 y_1}{x_2 x_1} = \frac{7 (-2)}{1 (-4)} = \frac{9}{5}$ Line 2: $m = \frac{y_2 y_1}{x_2 x_1} = \frac{5 (-4)}{3 (-1)} = \frac{9}{4}$
- Neither

Line 1:
$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{7 - (-2)}{1 - (-4)} = \frac{9}{5}$$

Line 2: $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - (-4)}{3 - (-1)} = \frac{9}{4}$
Neither

- □ In 1983, 87% of New Hampshire was forested. By 2001, that percent had fallen to 81.1%. What is the average rate of change of forested land? Then predict what percentage will be forested in 2005.
 - \blacksquare x = time in years
 - y = percent
 - Points are (1983, 87) and (2001, 81.1)

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{81.1 - 87}{2001 - 1983} = -\frac{5.9}{18} = -0.3278$$

- To get the percent for 2005, take the amount from 2001 and add 4 times the slope to get four more years.
- 81.1 + 4(-0.3278) = 79.8%

x = time in years

y = percent

Points are (1983, 87) and (2001, 81.1)

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{81.1 - 87}{2001 - 1983} = -\frac{5.9}{18} = -0.3278$$

To get the percent for 2005, take the amount from 2001 and add 4 times the slope to get four more years.

$$81.1 + 4(-0.3278) = 79.8\%$$

Homework Quiz 2.2 Homework Quiz

- □ Slope-intercept form
 - $\Box y = mx + b$
 - *m* is slope
 - *b* is y-intercept

- □ To graph
 - Solve equation for *y*
 - □ Plot the *y*-intercept
 - From there move up and over the slope to find another couple of points
 - Draw a line neatly through the points

y-intercept is where the line crosses the y-axis

Graph

- y = -2x
 - y = -2x + 0
 - $m = -2 = -\frac{2}{1}; \ b = 0$
- v = x 3
 - y = x 3
 - $m = 1 = \frac{1}{1}$; b = -3
- f(x) = 2 x
 - f(x) = 2 x
 - f(x) = -x + 2
 - $m = -1 = -\frac{1}{1}; b = 2$

$$y = -2x + 0$$

$$m = -2 = -\frac{2}{1}; \ b = 0$$

$$y = x - 3$$

 $m = 1 = \frac{1}{1}$; $b = -3$

$$f(x) = 2 - x$$

$$f(x) = -x + 2$$

$$m = -1 = -\frac{1}{1}; b = 2$$

- Standard Form
 - \triangle Ax + By = C
 - A, B, and C are integers
- □ To graph
 - Find the *x* and *y*-intercepts by letting the other variable = 0
 - Plot the two points
 - Draw a line through the two points

- □ *x*-intercept:
- \triangle Ax + B(0) = C
- \triangle Ax = C
- □ *y*-intercept:
- \Box By = C
- $y = \frac{c}{R}$

- Horizontal Lines
 - y = c
- Vertical Lines
 - $\square x = c$

Graph

- 2x + 5y = 10
 - x-int: $2x + 5(0) = 10 \rightarrow 2x = 10 \rightarrow x = 5$; (5, 0)
 - y-int: $2(0) + 5y = 10 \rightarrow 5y = 10 \rightarrow y = 2$; (0, 2)
- x = 1
 - Vertical line
 - **x**-int: (1, 0)
- v = -4
 - Horizontal line
 - y-int: (0, -4)

x-int:
$$2x + 5(0) = 10 \rightarrow 2x = 10 \rightarrow x = 5$$
; (5, 0)
y-int: $2(0) + 5y = 10 \rightarrow 5y = 10 \rightarrow y = 2$; (0, 2)

Vertical line

x-int: (1, 0)

Horizontal line

y-int: (0, -4)

Homework Quiz 2.3 Homework Quiz

- Given slope and y-intercept
 - Use slope-intercept form y = mx + b
- Any other line
 - □ Find the slope (*m*)
 - Find a point the line goes through (x_1, y_1)
 - Use point-slope form $y y_1 = m(x x_1)$

- Write the equation of the line given...
 - m = -2, b = -4
 - Given slope and yintercept
 - y = mx + b
 - y = -2x 4

- it passes through (-1, 6) and has a slope of 4.
 - Given slope and point
 - $y y_1 = m(x x_1)$
 - y 6 = 4(x (-1))
 - y 6 = 4x + 4
 - y = 4x + 10

Given slope and y-intercept

$$y = mx + b$$
$$y = -2x - 4$$

Given slope and point

$$y - y_1 = m(x - x_1)$$

$$y - 6 = 4(x - (-1))$$

$$y - 6 = 4x + 4$$

$$y = 4x + 10$$

- Write the equation of the line given...
 - it passes through (-1, 2) and (10, 0)

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{0 - 2}{10 - (-1)} = -\frac{2}{11}$$

$$y - y_1 = m(x - x_1)$$

$$y - 0 = -\frac{2}{11}(x - 10)$$

$$y = -\frac{2}{11}x + \frac{20}{11}$$

- Write an equation of the line that passes through (4, -2) and is (a) parallel to, and (b) perpendicular to, the line y = 3x 1.
 - a) m = 3; Parallel lines have same slope

$$y - y_1 = m(x - x_1)$$

$$y - (-2) = 3(x - 4)$$

$$y + 2 = 3x - 12$$

$$y = 3x - 14$$

b) $m = -\frac{1}{3}$; Perpendicular lines have negative reciprocal slopes

$$y - y_1 = m(x - x_1)$$
$$y - (-2) = -\frac{1}{3}(x - 4)$$
$$y + 2 = -\frac{1}{3}x + \frac{4}{3}$$
$$y = -\frac{1}{2}x - \frac{2}{2}$$

a) m = 3; Parallel lines have same slope

$$y - y_1 = m(x - x_1)$$

$$y - (-2) = 3(x - 4)$$

$$y + 2 = 3x - 12$$

$$y = 3x - 14$$

b) $m=-\frac{1}{3}$; Perpendicular lines have negative reciprocal slopes

$$y - y_1 = m(x - x_1)$$

$$y - (-2) = -\frac{1}{3}(x - 4)$$

$$y + 2 = -\frac{1}{3}x + \frac{4}{3}$$

$$y = -\frac{1}{3}x - \frac{2}{3}$$

- A certain farmer can harvest 44000 bushels of crops in a season. Corn averages 155 bushels per acre and soybeans average 44 bushels per acre in Michigan in 2013. Write an equation that models this situation.
- The "per" means this rate problem.

Rate × amount = total

155x + 44y = 44000

The "per" means this rate problem. Rate \times amount = total 155x + 44y = 44000

- In a chemistry experiment, you record the temperature to be -5 °F one minute after you begin. Six minutes after you begin the temperature is 20 °F. Write a linear equation to model this.
 - Two points: (1, -5), (6, 20)

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{20 - (-5)}{6 - 1} = \frac{25}{5} = 5$$

- $y y_1 = m(x x_1)$
- y (-5) = 5(x 1)
- y + 5 = 5x 5
- v = 5x 10

Two points: (1, -5), (6, 20)
$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{20 - (-5)}{6 - 1} = \frac{25}{5} = 5$$

$$y - y_1 = m(x - x_1)$$

$$y - (-5) = 5(x - 1)$$

$$y + 5 = 5x - 5$$

$$y = 5x - 10$$

Homework Quiz 2.4 Homework Quiz

2.5 Model Direct Variation

- Direct Variation
 - y = ax can be used to model the situation
 - a = constant of variation (slope)
- Write a direct variation equation that has the given ordered pair as a solution.
 - **(6, -2)**
 - y = ax
 - -2 = a(6)
 - $a = -\frac{1}{3}$
 - $y = -\frac{1}{3}x$

Slope is
$$\left(-\frac{2}{6}\right) = -\frac{1}{3}$$

$$y = -\frac{1}{3}x$$

2.5 Model Direct Variation

- □ Hooke's Law states that the distance *d* a spring stretches varies directly with the force *f* that is applied to it.
 - □ Suppose a spring stretches 15 in. when a force of 9 lbs. is applied. Write an equation to relate *d* to *f*.
 - Hooke's law: d = af
 - $15 = a(9) \rightarrow a = \frac{15}{9} = \frac{5}{3}$
 - $d = \frac{5}{3}f$
 - Predict the distance that the spring will stretch when a force of 6 lbs. is applied.
 - $d = \left(\frac{5}{3}\right)6 = 10 in.$

Hooke's law:
$$d = af$$

15 = $a(9) \rightarrow a = 15/9 = 5/3$

$$d = 5/3 f$$

$$d = (5/3) 6 = 10 in.$$

2.5 Model Direct Variation

The dimensions of five rectangles, each with an area of 24 ft² are given in the table. Tell whether the length and width show direct variation. If so, write an equation that relates the quantities. Length x 1 2 3 4 5

Length, x	1	2	3	4	5
Width, y	24	12	8	6	4.8

- y = ax
- Plug in each point to check if *a* is constant.
- 24 = a1
- $\frac{24}{1} = a = 24$
- 12 = a2
- $\frac{12}{2} = a = 6$
- No, the length and width are not directly related because the ratios (a) are not constant.

$$y = ax$$

Plug in each point to check if *a* is constant.

$$24 = a1$$

$$\frac{24}{1} = a = 24$$

$$12 = a2$$

$$\frac{12}{2} = a = 12$$

No, the length and width are not directly related because the ratios (a) are not constant.

Homework Quiz 2.5 Homework Quiz

2.6 Draw Scatter Plots and Best-Fitting

Lines

- Scatter Plot
 - Graph of many data points
- Positive Correlation
 - The slope of the scatter plot tends to be positive
- Negative Correlation
 - The slope of the scatter plot tends to be negative
- No Correlation
 - There is no obvious pattern from the scatter plot

2.6 Draw Scatter Plots and Best-Fitting Lines

- Correlation Coefficient (r)
 - Number between -1 and 1 that measures how well the data fits a line.
 - Positive for positive correlation, negative for negative
 - r = 0 means there is no correlation

2.6 Draw Scatter Plots and Best-Fitting Lines

□ For each scatter plot, (a) tell whether the data have a positive correlation, a negative correlation, or approximately no correlation, and (b) tell whether the correlation coefficient is closest to -1, -0.5, 0, 0.5, or 1.

Positive, $r \approx 0.5$

Negative, $r \approx -1$

No correlation, $r \approx 0$

Positive, $r \approx 0.5$

Negative, r ≈ -1

No correlation, r ≈ 0

2.6 Draw Scatter Plots and Best-Fitting Lines

- Best-fitting line
 - Line that most closely approximates the data
- Find the best-fitting line
 - 1. Draw a scatter plot of the data
 - 2. Sketch the line that appears to follow the data the closest
 - There should be about as many points below the line as above
 - 3. Choose two points on the line and find the equation of the line
 - These do not have to be original data points

See example 5 in the textbook to see how to do this on a TI graphing calculator

2.6 Draw Scatter Plots and Best

Lines

X	0	1	2	3	4	5	6	7
y	16.5	11.4	12.5	4.7	9.9	7.1	2.9	1.7

- Monarch Butterflies: The table shows the area in Mexico used by Monarch Butterflies to spend winter, *y*, in acres *x* years after 2006.
 - Approximate the bestfitting line for the data.
 - Use your equation from part (a) to predict the area used by the butterflies in 2016.

- 1. Plot the points.
- 2. Draw the best-fitting line.
- 3. Find the equation using 2 points (0,15) and (8,0).

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m = \frac{0 - 15}{8 - 0} = -1.875$$

$$y = mx + b$$

$$y = -1.875x + 15$$

- 2016 will be x = 10
- y = -1.875(10) + 15 = -3.75
- They would have gone extinct!

Sample Answer: y = -1.89x + 14.97

Sample Answer:

y = -1.89(10) + 14.97 = -3.93 acres (they would be gone, extinct!)

Homework Quiz 2.6 Homework Quiz

2.7 Use Absolute Value Functions and Transformations

- Absolute Value Function

 - □ Simplest y = |x|

Transformations f(x) = a|x - h| + k

- □ Transformations (changes to graph's size, shape, position, or orientation)
 - Stretch/Shrink
 - a is the factor the graph is stretched or shrunk vertically
 - Multiply the v-coordinates by a
 - Since the slope of the right side of the graph was 1, the new slope will be a Reflection → Flips the graph over a line
 - If a is negative, the graph will be flipped over the x-axis

function ☐ Translation → moves graph

- h is how far graph moves to right
- k is how far graph moves up
- Since the vertex was (0, 0), the new vertex will be (h, k)
- Apply stretch/shrinks and reflections before translations
 - Multiply before adding

Transformations

- □ Graph and compare with y = |x|
 - v = |x 2| + 3
 - y = a|x h| + k
 - v = |x 2| + 3
 - h = 2, k = 3
 - Translated 2 right and 3 up. The vertex will be (h, k) = (2, 3)
 - a = 1
 - The slope of the right side will be 1. (Translated 2 right and 3 up.)

$$y = a|x - h| + k$$
$$y = |x - 2| + 3$$

h = 2, k = 3

Translated 2 right and 3 up. The vertex will be (h, k) = (2, 3)

a = 1

The slope of the right side will be 1. (Translated 2 right and 3 up.)

Transformations

- □ Graph and compare with y = |x|
 - $y = \frac{1}{4}|x|$
 - y = a|x h| + k
 - $y = \frac{1}{4}|x|$
 - h = 0, k = 0 since they are missing
 - Not translated. The vertex will be (h, k) = (0, 0)
 - $a = \frac{1}{4}$
 - The slope of the right side will be 1/4. (Shrunk vertically by factor of 1/4.)

$$y = a|x - h| + k$$
$$y = \frac{1}{4}|x|$$

h = 0, k = 0 since they are missing

Not translated. The vertex will be (h, k) = (0, 0)

$$a = \frac{1}{4}$$

The slope of the right side will be 1/4. (Shrunk vertically by factor of 1/4.)

Transformations

- Graph and compare with y = |x|
 - y = -3|x+1|-2

 - v = -3|x + 1| 2
 - h = -1, k = -2
 - Translated 1 left and 2 down. The vertex will be (h, k) = (-1, -2)
 - a = -3
 - The slope of the right side will be -3. (Reflected over the x-axis, stretched by factor of 3, translated 1 left and 2 down.)

$$y = a|x - h| + k$$

 $y = -3|x + 1| - 2$

$$h = -1$$
. $k = -2$

Translated 1 left and 2 down. The vertex will be (h, k) = (-1, -2)

$$a = -3$$

The slope of the right side will be -3. (Reflected over the x-axis, stretched by factor of 3, translated 1 left and 2 down.)

2.7 Use Absolute Value Functions and Transformations

- Write an absolute value equation for the given graph.
 - Vertex is at (-3, 5), so h = -3 and k = 5.
 - The slope of the right side is $-\frac{5}{1} = -5$, so a = -5
 - $\mathbf{v} = a|x h| + k$
 - y = -5 |x + 3| + 5

Vertex is at (-3, 5), so h = -3 and k = 5. The slope of the right side is $-\frac{5}{1}$ = -5, so a = -5 y = a|x-h| + ky = -5|x+3| + 5

Transformations

□ The graph of f(x) is given. Sketch the following functions.

$$y = -\frac{1}{2}f(x)$$

- Reflected over the *x*-axis because of the -, shrunk vertically by factor of ½ because of the ½.
- Reflect the graph over the *x*-axis first.
- Make the distance from each point to the x-axis half the distance.

Reflected over the x-axis because of the -, shrunk vertically by factor of $\frac{1}{2}$ because of the $\frac{1}{2}$.

Reflect the graph over the x-axis first.

Make the distance from each point to the *x*-axis half the distance.

2.7 Use Absolute Value Functions and Transformations

□ The graph of f(x) is given. Sketch the following functions.

$$y = f(x - 1) + 3$$

■ h = 1 and k = 3, so translated right 1 and up 3.

h = 1 and k = 3, so translated right 1 and up 3.

Homework Quiz 2.7 Homework Quiz

- Linear Inequality in two variables
 - Like linear equation, but with inequality instead of =
- Tell whether the given ordered pair is a solution of $5x 2y \le 6$
 - \Box (0, -4)
 - $5x 2y \le 6$
 - $5(0) 2(-4) \le 6$
 - **■** 8 ≤ 6
 - Not true, so **not** a solution

- **-** (-3, 8)
 - $5x 2y \le 6$
 - 5(-3) 2(8) ≤ 6
 - $-15 16 \le 6$
 - **■** -31 ≤ 6
 - True, so it **is** a solution

$$5x - 2y \le 6$$

5(0) - 2(-4) \le 6
8 < 6

Not true, so not a solution

$$5x - 2y \le 6$$

$$5(-3) - 2(8) \le 6$$

$$-15 - 16 \le 6$$

$$-31 \le 6$$

True, so it is a solution

- Graphing a linear inequality
 - □ Graph the line as if it was =
 - Dotted or Solid line
 - Dotted if <, >
 - Solid if ≤, =, ≥
 - Shade
 - Test a point not on the line
 - If the point is a solution, shade that side of the line
 - If the point is not a solution, shade the other side of the line

- Graph
 - $x \ge -4$
 - Graph the line: Vertical line at x = -4.
 - Solid because equal to.
 - Shade the right because that is where the *x*'s are bigger than -4

Graph the line: Vertical line at x = -4.

Solid because equal to.

Shade the right because that is where the x's are bigger than -4.

- Graph
 - □ y > -3x
 - Graph line: y-int = 0, slope = -3.
 - Dotted because not equal to.
 - Pick (1, 0) as test point.

$$y > -3x$$

$$0 > -3(1)$$

$$0 > -3$$

This is true so shade that side of the line.

Graph line: y-int = 0, slope = -3.

Dotted because not equal to.

Pick (1, 0) as test point. $y > -3x \rightarrow 0 > -3(1) \rightarrow 0 > -3$. This is true so shade that side of the line.

- Graph
 - $y \le 2x + 3$
 - Graph the line: y-int = 3, slope = 2.
 - Solid because equal to.
 - \blacksquare Pick (0, 0) as test point.

$$y \le 2x + 3$$

 $0 \le 2(0) + 3$
 $0 \le 3$

This is true so shade that side of the line

Graph the line: y-int = 3, slope = 2.

Solid because equal to.

Pick (0, 0) as test point. $y \le 2x + 3 \to 0 \le 2(0) + 3 \to 0 \le 3$. This is true so shade that side of the line.

- Graph
 - y < 3|x 1| 3
 - Graph the absolute value: h = 1, k = -3. a = 3
 - Dotted because not equal to.
 - Pick (1, 0) as test point.

$$y < 3|x - 1| - 3$$

$$0 < 3|1 - 1| - 3$$

$$0 < -3$$

This is false so shade the other side of the line.

Graph the absolute value: h = 1, k = -3, a = 3

Dotted because not equal to.

Pick (1, 0) as test point. $y < 3|x-1|-3 \rightarrow 0 < 3|1-1|-3 \rightarrow 0 < -3$. This is false so shade the other side of the line.

- You have two part-time summer jobs, one that pays \$9 an hour and another that pays \$12 an hour. You would like to earn at least \$240 a week. Write an inequality describing the possible amounts of time you can schedule at both jobs.
 - Rate problem: rate × amount = total
 - 9x + 12y ≥ 240
 - Greater than sign because the 240 is the smallest we want, so the small side of the sign is pointed at 240.

Rate problem: rate × amount = total

$$9x + 12y \ge 240$$

Greater than sign because the 240 is the smallest we want, so the small side of the sign is pointed at 240.

2.8 Graph Linear Inequalities in Two

Variables

- Graph the previous answer
 - $9x + 12y \ge 240$
 - Graph the line: This is in standard form, so find the intercepts.
 - x-int: $9x + 12(0) = 240 \rightarrow x \approx 26.7$
 - v-int: $9(0) + 12y = 240 \rightarrow y = 20$
 - Solid line because equal to.
 - Test (0,0).

 $9x + 12y \ge 0$ $9(0) + 12(0) \ge 240$ $0 \ge 240$

This is false, so shade the other side of the line.

- Identify three possible solutions of the inequality
 - Pick any three points in the shaded area.
 - Sample Answers: (15, 12), (24, 4), (3, 20)

$$9x + 12y \ge 240$$

Graph the line: This is in standard form, so find the intercepts.

x-int: $9x + 12(0) = 240 \rightarrow x \approx 26.7$

y-int: $9(0) + 12y = 240 \rightarrow y = 20$

Solid line because equal to.

Test (0, 0). $9x + 12y \ge 0 \to 9(0) + 12(0) \ge 240 \to 0 \ge 240$. This is false, so shade the other side of the line.

Pick any three points in the shaded area.

Sample Answers: (15, 12), (24, 4), (3, 20)

Homework Quiz 2.8 Homework Quiz